The Economic Impact of Tobacco Control Funding:

A Benefit-Cost Analysis

Emily Nam

March, 2025

Abstract

This report examines a study by Chattopadhyay & Pieper (2012) exploring the economic effectiveness of state-level tobacco prevention and control programs in the United States. The study applies econometric modeling techniques to analyze how tobacco control spending influences cigarette demand over time using state-level panel data from 1991 to 2007. It addresses multiple factors, such as addiction, market structures, price elasticities, cross-border sales, and endogeneity in funding allocations. Their findings suggest that while the immediate impact of tobacco control spending on cigarette consumption is quite small, the long-term effects grow significantly. The benefit-cost analysis indicates that aligning state funding with CDC Best Practices recommendations could generate economic benefits around 14 to 20 times the cost. The research shows strong empirical evidence supporting sustained investment in tobacco control programs to maximize both public health improvements, as well as economic efficiency.

I. Introduction

Policy Questions

Tobacco control programs have been an important component of public health policy in the U.S. for several decades. Starting in the early 1990s, state-level initiatives were made to reduce the prevalence of smoking through multiple tactics, such as public education, smoking cessation programs, and policy interventions, such as taxation and advertising restrictions. While these programs have shown to be effective in reducing smoking rates, they have not been funded consistently across states. In many cases, funding has declined over time.

Even while collecting billions of dollars in tobacco tax revenues and settlements from the 1998 Master Settlement Agreement (MSA), many states still allocate only a small fraction of these funds to control programs. This raises two critical policy questions:

- 1. Does increased spending on tobacco control programs effectively reduce cigarette demand?
- 2. If so, does this effect persist and grow over time?

The economic significance of these questions is high; smoking is one of the leading causes of preventable death, being linked to serious health conditions like lung cancer, respiratory illness, and heart disease. Having these health consequences generates massive economic costs, such as through direct medical expenses and loss in productivity. According to the Centers for Disease Control and Prevention (CDC), illnesses caused by smoking cost the U.S. economy over \$300 billion on an annual basis, with \$170 billion being spent on direct medical care, and \$156 billion in loss of productivity.

Despite this, Figure 1 in the study shows a major funding gap in what states collect in tobacco-related revenue and what they choose to spend on prevention programs. Some states dedicate a portion of their cigarette tax to public health efforts, but most of them use said funds for general budgetary needs. This leads to a chronic underfunding of tobacco control efforts. Failing to adequately fund said programs only raises concerns about how sustainable and effective they can be in the long term.

Distinct Features of the Cigarette Market

The cigarette market is fundamentally different from most consumer markets due to two main characteristics:

- 1. Addiction: Cigarette consumption is less responsive to short-term interventions, such as price increases, due to high levels of nicotine dependence. Most goods usually show a reduction in demand with higher prices, but the addictive nature of nicotine means that smokers have a habitual behavior and lower price elasticity in the short run. This shows the need for sustained and long-term interventions over one-time policy shifts.
- 2. Oligopolistic Structure: The cigarette industry is mainly dominated by a couple of large firms, meaning they hold significant market power. This lets them strategically adjust prices, be more aggressive in marketing, as well as even influence policy decisions to counteract public health initiatives. Due to this, regulatory efforts face resistance from industry lobbying, which shows how crucial it is to understand market dynamics when designing policies to be effective.

These factors make reducing cigarette consumption even more challenging, showing how necessary a comprehensive, well-funded, and sustained policy approach is.

II. Methodology

Econometric Modeling of Addiction

The study uses econometric models to analyze the impacts of tobacco control funding on cigarette demand. Since nicotine addiction creates inertia in consumer behaviors, traditional demand models have been shown to fail to capture the long-term effects that control policies have. To combat this, the study incorporates lagged effects to show how past consumption influences current smoking behavior.

Econometric Modeling of Oligopoly

As the cigarette market is oligopolistic, firms can respond with strategies to policy interventions. For example, when states raise cigarette taxes, companies could lower their pre-tax prices, as well as introduce price promotions to offset the impact. This makes the price a more endogenous variable, meaning it is influenced by internal market dynamics over external policies themselves. To target this, the study replaces price with total tax per pack as the key independent variable, which ensures that demand estimates are not biased by industry price manipulation.

Panel Data Models (FE, RE)

The study uses panel data regression techniques, such as Fixed Effects (FE) and Random Effects (RE) models to control state-specific factors. Some of these include demographics, regulatory environments, as well as even cultural attitudes toward smoking. The FE model has proven to be the most reliable approach, given the high serial correlation in the dataset.

Endogeneity of Tobacco Control Funding

One of the most significant challenges when estimating the impact of tobacco control spending is endogeneity. For example, states with higher smoking rates are more likely to allocate more resources to control programs, which then creates a reverse causality problem. To correct this bias, the study uses instrumental variable techniques, such as smoke-free air law scores, Alciati scores on youth access laws, as well as lagged control funding levels. These variables are valid as they influence tobacco control funding, but are exogenous to cigarette demand.

Accounting for Cross-Border Sales

Another critical factor in cigarette demand is cross-border shopping. Smokers in high-taxed states have been shown to often purchase cigarettes from neighboring and lower-tax states, which reduces the effectiveness of price-based policies. The study accounts for this by including the average price of cigarettes in bordering states, labeling this a substitute good.

III. Data

The study uses an extensive panel dataset from the years of 1991 to 2007 for the entirety of all fifty U.S. states. There are 850 state-year observations (ie. 50 states for 17 years), which lets for a longitudinal analysis on how tobacco control policies have influenced cigarette demand over time. By using economic, demographic, as well as policy-related variables, the study is quite thorough for assessing the long-term effects of control funding.

Key Variables in Model

The model includes economic and policy-related factors, such as cigarette demand measured as state tax-paid sales per capita each year. There are also price and tax effects, which is the cigarette price per pack including all taxes, as well as the average price of cigarettes in the bordering states to account for cross-border purchases. Tobacco control funding is the total annual spending on control programs per state, this being adjusted for inflation. There are also macroeconomic indicators, which is the the per capita disposable income to control for purchasing power, as well as the unemployment rate to control for economic conditions.

Demographics are also a variable, being used as the percentage of young adults 15-24 years old and percentage of adults 25+ years old, since the younger generation is more susceptible to smoking. There are also policy environments, such as smoke-free air laws and youth access laws, which are more instrumental variables.

Data Sources

The data is sourced from multiple public and government databases, including *Tax*Burden on Tobacco (Orzechowski and Walker, 2008), Bureau of Labor Statistics, U.S. Census

Bureau, ImpacTEEN.org, as well as the Centers for Disease Control and Prevention (CDC).

Data Adjustments

All the financial data is converted into 2008 constant dollars to combat inflation and ensure more consistency throughout the years. The study also log-transforms certain variables to improve normality, as well as interpret elasticities. Having this dataset shows both the short and long term impacts of tobacco control funding, and makes sure that results are not skewed by neither state-specific factors nor temporal variations.

IV. Empirical Findings

Comparison of Fixed Effects (FE) and Random Effects (RE) Models

The study applies both fixed effects and random effects models in order to account for unobserved heterogeneity across the states. There is a high serial correlation in error terms, suggesting that the FE model is the most reliable. It is able to effectively capture state-specific factors influencing cigarette demand, such as smoking culture, pre-existing policies, and the overall economic conditions.

Price and Tax Elasticities

The study shows that cigarette demand is price elastic, meaning an increase in prices leads to a decline in consumption. The own-price elasticity of demand for the FE model is ~-0.91, meaning that a 1% increase in price results in a 0.91% decrease in sales. However, as many smokers engage in cross-border purchases, the study calculates a full price elasticity of ~-0.67, accounting for consumers buying cigarettes in lower-taxed states. The tax elasticity of demand is ~-0.42, translating to a price elasticity of ~-0.58, which only reinforces the argument that taxation alone is not sufficient without policies complementing them.

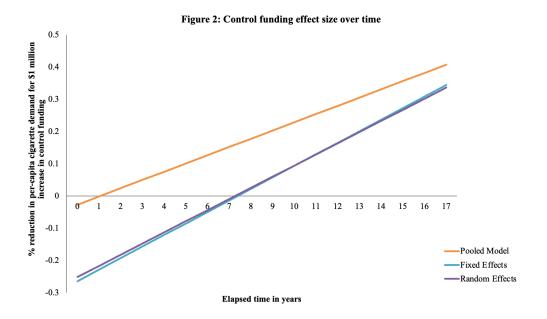


Figure 3: Time Path of Per-capita Cigarette Demand 120 100 Annual per-capita cigarette demand -Predicted (Pooled) Predicted (FE) Predicted (RE) 20 -Actual 0 8 16 10 12 13 14 15 Elapsed time in years

Impact of Control Funding on Cigarette Demand

One of the most critical findings in the study is that the immediate impact of control funding on cigarette demand may be small, but the long-term effects grow significantly.

Contemporaneous effects, or short-term impacts, are either weak or negligible. This hints at the

idea that funding programs need more time to take effect before significantly reducing consumption. Elapsed time effects, or the long-term impacts, are strong and highly significant, showing that more time passing increases the effectiveness of tobacco control funding. This dynamic can be seen in Figure 2 of the study, showing that control funding begins to have a statistically significant impact after ~7 years. This only emphasized the importance of long-term policy commitments, as reducing funding can not undo years of progress. We can also see in Figure 3 that the predicted cigarette consumption follows said observed trends, which validates the model. FE and RE models are closely aligned, showing the estimation methods are reliable.

V. Benefit-Cost Analysis

Estimating Economic Benefits

To quantify the economic impacts of reduced smoking, the study estimates cost savings from the three following major areas:

- Medical Cost Savings: These are the healthcare expenditures avoided from a reduction in smoking-related illnesses.
- 2. Productivity Gains: This is the increased workforce efficiency, as fewer workers in the labor force suffer from smoking-related illnesses.
- 3. Reduced Medicaid Expenditures: There is lower government spending on smoking-related health treatments, especially for lower-income populations.

TABLE 4Total Costs and Benefits under Various Levels of Control Funding (Fixed Effects Model)

Additional Funding in a State in 2008 (Million Dollar)	Predicted Per-Capita Packs Reduction in a State in 2008	Average Pack Reduction in a State in 2008 (Million)	Medical Cost Avoided (Million Dollar)	Productivity Cost Avoided (Million Dollar)	Medicaid Cost Avoided (Million Dollar)	Total Cost Avoided (Million Dollars)
1	0.19	1.4	7.0	6.8	2.1	15.9
10	1.9	14.0	68.8	66.8	21.1	157
20	3.75	27.5	135	132	42	309
50	8.97	65.1	324	314	99	737
59.832	10.57	76.5	382	371	117	869

TABLE 5Summary of Aggregate Benefits in a State and the Benefit-Cost Ratios

	Total Cos	t Avoided (Mil	lion Dollars)	Benefit-Cost Ratios			
Additional Funding in 2008 (Million Dollar)	Pooled Model	Fixed Effects	Random Effects	Pooled Model	Fixed Effects	Random Effects	
1	19.7	15.9	15.6	19.7	15.9	15.6	
10	194	157	154	19.4	15.7	15.4	
20	380	309	303	19.0	15.4	15.1	
50	898	737	724	17.9	14.7	14.5	
59.832	1055	869	853	17.6	14.5	14.3	

Projected Cost Savings and Effectiveness of Tobacco Control Funding

If all the states followed the *CDC Best Practices* (2007) by increasing annual spending to the recommended \$73.72 million per state, the estimated benefits would range from \$853 million to \$1.05 billion on an annual basis. According to the CDC, the per-pack economic cost of smoking estimates are \$5.31 in medical expenses per pack avoided, \$5.16 in lost productivity per pack avoided, as well as \$1.63 in Medicaid costs per pack avoided. A \$1 million increase in control funding leads to a 0.022% reduction in cigarette demand (1999) and 0.308% (2007), showing increasing effectiveness with time. For every dollar spent on tobacco control, states could generate anywhere between \$14 to \$20 in economic benefits. This is an exceptionally high-return public health investment.

Policy Implications

These results indicate that reducing funding for tobacco control would be a costly mistake, as it leads to higher future healthcare costs, higher productivity losses from smoking-related illnesses, as well as higher Medicaid expenditures for smoking-related diseases. Policymakers should prioritized sustained investment in tobacco control programs in order to maximize both health and economic benefits.

VI. Conclusion

The findings of this study provides strong empirical support for increasing state-level tobacco control funding. These results confirm that tobacco control spending significantly reduces cigarette demand, especially overtime. The impact of spending grows steadily, which only reinforced the necessity for sustained investment. Increasing funding is a highly efficient public health intervention, and the economic benefits will far outweigh program costs. Despite these clear benefits, most states still continue to underfund tobacco control programs, and instead divert tobacco tax revenues and settlement funds into completely unrelated expenditures. This is a short-term budgeting strategy that cotninues to undermine long-term public health goals, as well as increasing future healthcare costs. To achieve maximum impact, states should fully fund their tobacco control programs in accordance with CDC recommendations, as well as implement multi-year funding commitments to ensure long-term effectiveness. This should be complemented with taxation policies with comprehensive prevention and cessation programs.

Reducing smoking rates is not just a public health priority, but also an economic necessity. Making these long-term invesments in prevention and control efforts will generate substantial economic returns, all while improving the health of millions of Americans.

References

Chattopadhyay, S., & Pieper, D. R. (2012). Does spending more on tobacco control programs make economic sense? An incremental benefit-cost analysis using panel data. *Contemporary Economic Policy, 30*(3), 430–447.

Appendix

```
. use "C:\Users\923606369\Desktop\Tobacco-Data-690.dta", cle
> ar

. gen lqpc=log(qpc)
. gen lpreal=log(preal)
. gen lpricesub=log(pricesub)
. gen lpopul=log(popul)
. gen lpcpdireal=log(pcpdireal)
. gen ltottaxreal=log(tottaxreal)
. gen ltaxsub=log(taxsub)
. gen totfundreal1=totfundreal[_n-1]
(1 missing value generated)
. replace totfundreal1=totfundreal if t==0
(50 real changes made)
. gen timefund = t*totfundreal
```

. regress totfundreal airscore youthscore totfundreal1

	Source	SS	df	MS	Number of obs		850
-					F(3, 846)	=	941.40
	Model	309993.334	3	103331.111	Prob > F	=	0.0000
	Residual	92860.1165	846	109.763731	R-squared	=	0.7695
-					Adj R-squared	=	0.7687
	Total	402853.45	849	474.503475	Root MSE	=	10.477

totfundreal	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
airscore	.0137435	.0369321	0.37	0.710	0587458	.0862328
youthscore	.0469427	.055802	0.84	0.400	0625838	.1564693
totfundreal1	.883919	.0171702	51.48	0.000	.8502178	.9176202
_cons	.9483597	.8804543	1.08	0.282	7797715	2.676491

```
. predict totfundrealhat
(option xb assumed; fitted values)
```

. gen timefundhat=t* totfundrealhat

. regress lqpc d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 lpreal lpricesub lpopul lpcpdirea > l totfundrealhat timefundhat pcgr pcnt1524 pcnt25 unemprate, robust

	Ι					
		Robust				
lqpc	Coefficient	std. err.	t	P> t	[95% conf.	interval]
d2	.0227965	.030819	0.74	0.460	0376965	.0832895
d3	0240683	.0294439	-0.82	0.414	0818622	.0337257
d4	1324222	.0318987	-4.15	0.000	1950347	0698098
d5	0930591	.0318235	-2.92	0.004	155524	0305943
d6	093822	.0333573	-2.81	0.005	1592975	0283466
d7	079113	.0346178	-2.29	0.023	1470626	0111634
d8	0155109	.0382576	-0.41	0.685	0906049	.0595831
d9	.1609725	.0402517	4.00	0.000	.0819645	.2399805
d10	.3259246	.0496902	6.56	0.000	.2283902	.423459
d11	.3175405	.0522417	6.08	0.000	.2149978	.4200832
d12	.3750074	.0552738	6.78	0.000	.2665131	.4835016
d13	.3880559	.0589908	6.58	0.000	.2722657	.5038461
d14	.3346913	.0633176	5.29	0.000	.2104083	.4589744
d15	.2939257	.0611539	4.81	0.000	.1738897	.4139616
d16	.2649023	.0621857	4.26	0.000	.1428409	.3869636
d17	.2193363	.0613181	3.58	0.000	.0989781	.3396945
lpreal	-1.532264	.090024	-17.02	0.000	-1.708967	-1.35556
lpricesub	.2964316	.1123163	2.64	0.008	.0759714	.5168918
lpopul	0457603	.0082895	-5.52	0.000	0620313	0294893
lpcpdireal	.3708487	.1062991	3.49	0.001	.1621995	.5794978
totfundrealhat	.0020588	.0010676	1.93	0.054	0000367	.0041543
timefundhat	0003735	.0001175	-3.18	0.002	0006042	0001428
pcgr	0208422	.0021468	-9.71	0.000	0250561	0166283
pcnt1524	0341607	.0143581	-2.38	0.018	0623435	0059779
pcnt25	.0273491	.0067222	4.07	0.000	.0141543	.0405438
unemprate	.0127407	.0065432	1.95	0.052	0001025	.025584
_cons	1.144746	1.229844	0.93	0.352	-1.269254	3.558747

. xtreg lqpc d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 lpreal lpricesub lpopul lpcpdireal > totfundrealhat timefundhat pcgr pcnt1524 pcnt25 unemprate, fe robust

Fixed-effects (within) regression Group variable: state1	Number of obs Number of groups		850 50
R-squared:	Obs per group:		
Within = 0.7782	min	=	17
Between = 0.1318	avg	=	17.0
Overall = 0.1953	max	=	17
	F(26, 49)	=	49.08
corr(u_i, Xb) = -0.7555	Prob > F	=	0.0000

(Std. err. adjusted for 50 clusters in state1)

lqpc	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
d2	.0200613	.0175044	1.15	0.257	015115	.0552377
d3	0153965	.0133679	-1.15	0.255	0422604	.0114673
d4	0819747	.0200941	-4.08	0.000	1223553	0415941
d5	0595152	.0233008	-2.55	0.014	1063399	0126905
d6	0560963	.0280006	-2.00	0.051	1123656	.000173
d7	0444779	.031326	-1.42	0.162	1074299	.018474
d8	0111122	.0372083	-0.30	0.766	0858851	.0636607
d9	.0692337	.059304	1.17	0.249	049942	.1884095
d10	.1522405	.0987408	1.54	0.130	0461866	.3506676
d11	.1531512	.1071952	1.43	0.159	0622656	.368568
d12	.1958512	.1220482	1.60	0.115	0494139	.4411163
d13	.1937308	.1334215	1.45	0.153	0743898	.4618513
d14	.1481979	.1314835	1.13	0.265	1160281	.4124239
d15	.1211289	.1314754	0.92	0.361	1430808	.3853386
d16	.1077579	.1329625	0.81	0.422	1594402	.374956
d17	.0838694	.1353912	0.62	0.538	1882094	.3559481
lpreal	9112639	.1974258	-4.62	0.000	-1.308006	5145219
lpricesub	.240897	.2583001	0.93	0.356	2781764	.7599705
lpopul	429696	.1355902	-3.17	0.003	7021747	1572172
lpcpdireal	1573025	.2278561	-0.69	0.493	6151965	.3005915
totfundrealhat	.0037525	.0006214	6.04	0.000	.0025037	.0050012
timefundhat	0004424	.000069	-6.41	0.000	0005811	0003037
pcgr	0057325	.0033042	-1.73	0.089	0123725	.0009075
pcnt1524	0156382	.0121819	-1.28	0.205	0401186	.0088422
pcnt1324 pcnt25	.0060673	.0027173	2.23	0.030	.0006066	
						.011528
unemprate	0037102	.0124421	-0.30	0.767	0287136	.0212932
_cons	7.279982	2.349451	3.10	0.003	2.558583	12.00138
sigma_u	.45535708					
sigma_e	.08883782					
rho	.9633336	(fraction				

. xtreg lqpc d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 lpreal lpricesub lpopul lpcpdireal > totfundrealhat timefundhat pcgr pcnt1524 pcnt25 unemprate, re robust

Random-effects GLS regression	Number of obs = 850
Group variable: state1	Number of groups = 50
R-squared:	Obs per group:
Within = 0.7711	min = 17
Between = 0.5663	avg = 17.0
Overall = 0.5982	max = 17
	Wald chi2(26) = 1463.64
$corr(u_i, X) = 0 $ (assumed)	Prob > chi2 = 0.0000
(Std.	. err. adjusted for 50 clusters in state1)
Robust lqpc Coefficient std. err.	. z P> z [95% conf. interval]

d2	.0138427	.0152642	0.91	0.364	0160745	.0437599
d3	0265143	.0098857	-2.68	0.007	0458899	0071387
d4	0972243	.0179562	-5.41	0.000	1324178	0620309
d5	0790339	.0210176	-3.76	0.000	1202277	0378402
d6	0808701	.0247951	-3.26	0.001	1294675	0322727
d7	0729102	.0275144	-2.65	0.008	1268374	0189829
d8	0421069	.0307113	-1.37	0.170	1022998	.0180861
d9	.0354946	.045996	0.77	0.440	0546559	.1256451
d10	.1068975	.0784906	1.36	0.173	0469413	.2607362
d11	.1003809	.0841355	1.19	0.233	0645217	.2652835
d12	.1388136	.0964953	1.44	0.150	0503137	.3279409
d13	.1336396	.1049345	1.27	0.203	0720281	.3393074
d14	.082863	.1039406	0.80	0.425	1208567	.2865827
d15	.0502931	.1027068	0.49	0.624	1510085	.2515947
d16	.0327123	.1030396	0.32	0.751	1692416	.2346663
d17	.0026744	.1043568	0.03	0.980	2018611	.2072099
lpreal	9153558	.1930471	-4.74	0.000	-1.293721	5369904
lpricesub	.2487038	.2512691	0.99	0.322	2437747	.7411822
lpopul	0670995	.0258621	-2.59	0.009	1177882	0164107
lpcpdireal	1528424	.1859739	-0.82	0.411	5173447	.2116598
totfundrealhat	.0035796	.0006353	5.63	0.000	.0023344	.0048247
timefundhat	000429	.0000719	-5.97	0.000	00057	0002881
pcgr	0064743	.0030243	-2.14	0.032	0124019	0005468
pcnt1524	0172492	.0105307	-1.64	0.101	0378891	.0033906
pcnt25	.0124219	.0019576	6.35	0.000	.0085851	.0162587
unemprate	0029862	.0121312	-0.25	0.806	026763	.0207906
_cons	6.452937	1.911201	3.38	0.001	2.707053	10.19882
sigma u	.15932571					
sigma e	.08883782					
rho	.76283331	(fraction	of wanta		·	

. regress lqpc d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 ltottaxreal ltaxsub lpopul lpcpdi > real totfundrealhat timefundhat pcgr pcnt1524 pcnt25 unemprate, robust

Linear regression

Number of obs = 850 F(26, 823) = 101.55 Prob > F = 0.0000 R-squared = 0.7169 Root MSE = .18522

lqpc	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
d2	0252654	.029936	-0.84	0.399	0840253	.0334945
d3	0405346	.0292033	-1.39	0.166	0978563	.0167872
d4	0341588	.031603	-1.08	0.280	0961909	.0278732
d5	0071522	.0319658	-0.22	0.823	0698963	.0555918
d6	0269201	.0320307	-0.84	0.401	0897917	.0359515
d7	0403535	.0331444	-1.22	0.224	105411	.024704
d8	0420835	.0373499	-1.13	0.260	1153958	.0312288
d9	0584153	.0384429	-1.52	0.129	1338729	.0170423
d10	0788519	.040125	-1.97	0.050	1576112	0000926
d11	0892345	.0410582	-2.17	0.030	1698256	0086433

d12	0620732	.0420394	-1.48	0.140	1445902	.0204438
d13	0393337	.0448706	-0.88	0.381	127408	.0487406
d14	0686758	.047625	-1.44	0.150	1621565	.024805
d15	0870663	.0476833	-1.83	0.068	1806615	.0065289
d16	1007371	.0503159	-2.00	0.046	1994997	0019745
d17	1526907	.0491092	-3.11	0.002	2490847	0562966
ltottaxreal	5694809	.0291519	-19.53	0.000	6267018	5122601
ltaxsub	.1784308	.0458446	3.89	0.000	.0884447	.2684169
lpopul	0365868	.0076541	-4.78	0.000	0516107	0215629
lpcpdireal	.2404433	.098193	2.45	0.015	.047705	.4331815
totfundrealhat	.0002729	.0006369	0.43	0.668	0009772	.0015231
timefundhat	0002556	.0000909	-2.81	0.005	0004341	0000771
pcgr	0221352	.0021083	-10.50	0.000	0262734	0179969
pcnt1524	0365387	.0170922	-2.14	0.033	0700882	0029892
pcnt25	.0289421	.0082813	3.49	0.000	.0126872	.045197
unemprate	.0004518	.0057868	0.08	0.938	0109069	.0118104
_cons	1.1662	1.298621	0.90	0.369	-1.382799	3.7152

. xtreg lqpc d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 ltottaxreal ltaxsub lpopul lpcpdire > al totfundrealhat timefundhat pcgr pcnt1524 pcnt25 unemprate, fe robust

```
Fixed-effects (within) regression
                                        Number of obs =
                                                               850
Group variable: state1
                                        Number of groups =
                                                                 50
R-squared:
                                         Obs per group:
                                                             17
   Within = 0.8107
                                                    min =
    Between = 0.1819
                                                              17.0
                                                    avg =
    Overall = 0.2630
                                                     max =
                                                             131.32
                                        F(26, 49)
corr(u_i, Xb) = -0.6760
                                         Prob > F
                                                              0.0000
```

(Std. err. adjusted for 50 clusters in state1)

lqpc	Coefficient	Robust	t	P> t	[95% conf	. intervall
1990	COCTTICIENT	sca. cir.		12[4]	[33% 60111	. Incerval
d2	0076747	.0118463	-0.65	0.520	0314808	.0161314
d3	0228945	.0109608	-2.09	0.042	044921	0008681
d4	0242013	.0176068	-1.37	0.176	0595836	.0111809
d5	0084686	.0190285	-0.45	0.658	0467079	.0297707
d6	0174485	.0209233	-0.83	0.408	0594955	.0245984
d7	023917	.0231911	-1.03	0.307	0705212	.0226872
d8	0280585	.0252872	-1.11	0.273	078875	.022758
d9	0539558	.0293266	-1.84	0.072	1128899	.0049782
d10	0712568	.0335511	-2.12	0.039	1386803	0038333
d11	0749262	.0389803	-1.92	0.060	15326	.0034077
d12	0526986	.0485352	-1.09	0.283	1502339	.0448366
d13	0435526	.0618794	-0.70	0.485	1679039	.0807987
d14	0732268	.0645374	-1.13	0.262	2029196	.0564659
d15	0859312	.068586	-1.25	0.216	2237599	.0518975
d16	0888984	.0722969	-1.23	0.225	2341846	.0563877

```
d17
                 -.1178282
                            .0748522
                                        -1.57
                                                0.122
                                                        -.2682494
                                                                     .0325929
  ltottaxreal
                 -.4183044
                            .0491275
                                        -8.51
                                                0.000
                                                        -.5170297
                                                                     -.319579
                 .1441635
                            .1143438
                                                                    .3739459
      ltaxsub
                                        1.26
                                               0.213
                                                         -.085619
       lpopul
                 -.3563724
                            .1287501
                                        -2.77
                                               0.008
                                                        -.6151054
                                                                    -.0976394
   lpcpdireal
                 -.1219102
                            .2028316
                                        -0.60
                                                0.551
                                                        -.5295155
                                                                    .2856951
totfundrealhat
                  .0026458
                             .000453
                                        5.84
                                                0.000
                                                        .0017355
                                                                     .0035561
  timefundhat
                                                        -.0005041
                                                                    -.0002115
                 -.0003578
                            .0000728
                                        -4.92
                                                0.000
                 -.0067532
                             .003082
                                        -2.19
                                                0.033
                                                        -.0129468
                                                                    -.0005597
         pcgr
     pcnt1524
                 -.0109377
                             .0110293
                                        -0.99
                                                0.326
                                                         -.033102
                                                                     .0112266
                   .009543
                            .0024433
                                                         .0046331
       pcnt25
                                        3.91
                                                0.000
                                                                      .014453
    unemprate
                  -.007539
                            .0126645
                                        -0.60
                                                0.554
                                                        -.0329892
                                                                     .0179112
        _cons
                  5.843831
                            2.130235
                                         2.74
                                                0.008
                                                         1.562963
                                                                     10.1247
                 .38852296
      sigma_u
      sigma_e
                 .08208388
                            (fraction of variance due to u_i)
                 .95727151
```

. xtreg lqpc d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 ltottaxreal ltaxsub lpopul lpcpdire > al totfundrealhat timefundhat pcgr pcnt1524 pcnt25 unemprate, re robust

Random-effects GLS regression Group variable: state1	Number of obs Number of groups	=	850 50
R-squared:	Obs per group:		
Within = 0.8061	min	=	17
Between = 0.5777	avg	=	17.0
Overall = 0.6275	max	=	17

(Std. err. adjusted for 50 clusters in state1)

			_			•
lqpc	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
d2	0121829	.0106639	-1.14	0.253	0330838	.0087179
d3	0311253	.0086716	-3.59	0.000	0481213	0141293
d4	0357956	.0156248	-2.29	0.022	0664197	0051714
d5	0237012	.0176436	-1.34	0.179	058282	.0108796
d6	0369571	.0179394	-2.06	0.039	0721176	0017965
d7	0465376	.0197849	-2.35	0.019	0853153	0077599
d8	0526531	.0226681	-2.32	0.020	0970817	0082245
d9	0806088	.026337	-3.06	0.002	1322283	0289893
d10	1063702	.0292067	-3.64	0.000	1636143	049126
d11	1155791	.0319045	-3.62	0.000	1781107	0530475
d12	0966689	.0404901	-2.39	0.017	176028	0173098
d13	0887899	.0523471	-1.70	0.090	1913883	.0138086
d14	1221526	.0558104	-2.19	0.029	2315389	0127664
d15	1389708	.0587049	-2.37	0.018	2540304	0239112
d16	1451471	.0620266	-2.34	0.019	266717	0235771
d17	1787459	.0639334	-2.80	0.005	304053	0534388
ltottaxreal	4205687	.049383	-8.52	0.000	5173577	3237798
ltaxsub	.139296	.1134822	1.23	0.220	0831251	.3617171
lpopul	0669391	.0257074	-2.60	0.009	1173246	0165535
lpcpdireal	1138533	.1820897	-0.63	0.532	4707426	.243036
totfundrealhat	.0025189	.0004585	5.49	0.000	.0016202	.0034176
timefundhat	000346	.0000757	-4.57	0.000	0004944	0001970
pcgr	0071238	.0030308	-2.35	0.019	013064	0011836
pcnt1524	0120981	.0099603	-1.21	0.225	03162	.0074237
pcnt25	.0144801	.0020337	7.12	0.000	.0104942	.018466
unemprate	0070747	.0123477	-0.57	0.567	0312757	.0171264
_cons	5.140241	1.866945	2.75	0.006	1.481096	8.799386
sigma_u	.1719725					
sigma e	.08208388					
rho	-					

.

. sum qpc if	year==1991				
Variable	Obs	Mean	Std. dev.	Min	Max
qpc	50	99.9635	21.05541	52.48482	169.1395
. sum qpc if	year==1992				
Variable	Obs	Mean	Std. dev.	Min	Max
qpc	50	97.44765	21.37079	50.00322	164.4944
. sum qpc if	year==1993				
Variable	Obs	Mean	Std. dev.	Min	Max
qpc	50	95.20128	21.33246	50.53775	162.9887
. sum qpc if	year==1994				
Variable	Obs	Mean	Std. dev.	Min	Max
qpc	50	93.94424	22.30474	42.84851	164.8089
. sum qpc if	year==1995				
Variable	Obs	Mean	Std. dev.	Min	Max
qpc	50	95.19581	24.37534	45.74372	172.6478
. sum qpc if	year==1996				
Variable	Obs	Mean	Std. dev.	Min	Max
qpc	50	93.44806	24.71376	51.58582	177.1943
. sum qpc if	year==1997				
Variable	Obs	Mean	Std. dev.	Min	Max
qpc	50	93.44863	27.05952	48.85136	185.6792
. sum qpc if	year==1998				
Variable	Obs	Mean	Std. dev.	Min	Max
qpc	50	91.43396	27.16776	35.28012	170.2615
. sum qpc if	year==1999				
Variable	Obs	Mean	Std. dev.	Min	Max

50

88.23525

32.56018

26.90126

167.6749

· Sum qpc II year 2000		sum	qpc	if	year==2000
------------------------	--	-----	-----	----	------------

. Sum qpc IT	year==2000								
Variable	Obs	Mean	Std. dev.	Min	Max				
qpc	50	83.40345	25.55514	32.9999	154.1366				
. sum qpc if	year==2001								
Variable	Obs	Mean	Std. dev.	Min	Max				
qpc	50	80.82464	24.85774	37.29292	151.6631				
. sum qpc if	year==2002								
Variable	Obs	Mean	Std. dev.	Min	Max				
qpc	50	79.14517	23.91169	35.29487	140.7355				
. sum qpc if	. sum qpc if year==2003								
Variable	Obs	Mean	Std. dev.	Min	Max				
qpc	50	77.03059	30.67739	33.7342	179.3778				
. sum qpc if year==2004									
Variable	Obs	Mean	Std. dev.	Min	Max				
qpc	50	72.80522	30.75924	33.03384	173.4256				
. sum qpc if	year==2005								
Variable	Obs	Mean	Std. dev.	Min	Max				
qpc	50	71.48799	31.21384	32.42856	180.4522				
. sum qpc if year==2006									
Variable	Obs	Mean	Std. dev.	Min	Max				
qpc	50	69.94525	29.75866	32.20938	182.1569				
. sum qpc if year==2007									

.

Variable

qpc

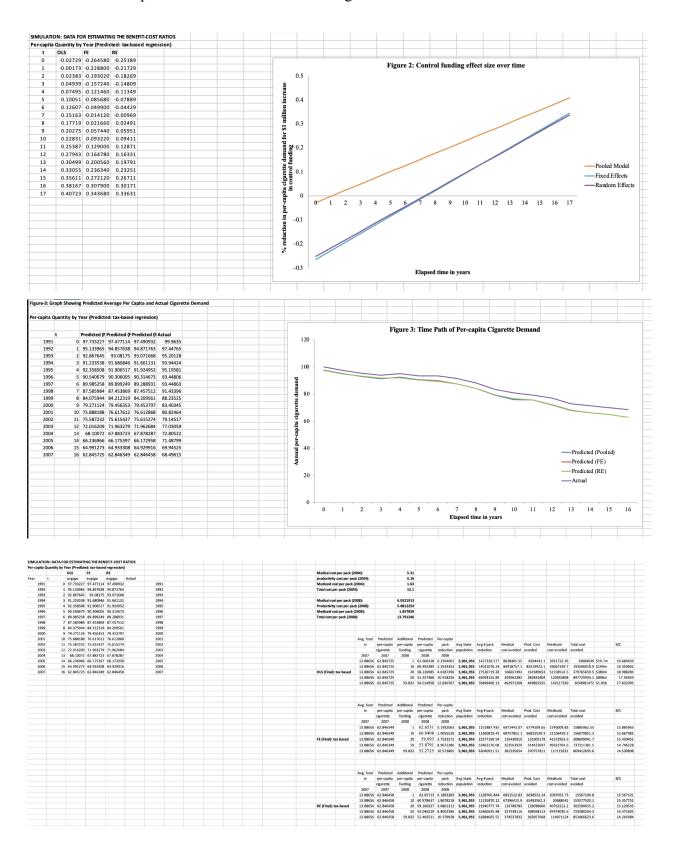
0bs

50

Mean

68.49615

Std. dev.


30.86138

Min

31.39841

Max

183.4207

